Homoclinic solutions for a class of non-periodic second order Hamiltonian systems
نویسندگان
چکیده
We study the existence of homoclinic solutions for the second order Hamiltonian system ü+Vu(t, u) = f(t). Let V (t, u) = −K(t, u)+W (t, u) ∈ C1(R×Rn,R) be T -periodic in t, where K is a quadratic growth function and W may be asymptotically quadratic or super-quadratic at infinity. One homoclinic solution is obtained as a limit of solutions of a sequence of periodic second order differential equations.
منابع مشابه
MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS
In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.
متن کاملHomoclinic solutions for second order Hamiltonian systems with general potentials near the origin∗
In this paper, we study the existence of infinitely many homoclinic solutions for a class of second order Hamiltonian systems with general potentials near the origin. Recent results from the literature are generalized and significantly improved.
متن کاملExistence of Homoclinic Solutions for Second Order Hamiltonian Systems under Local Conditions
Under some local conditions on V(t,x) with respect to x , the existence of homoclinic solutions is obtained for a class of the second order Hamiltonian systems ü(t) +∇V(t,u(t)) = f (t), ∀t ∈ R .
متن کاملComputation of Homoclinic Solutions to Periodic Orbits in a Reduced Water-wave Problem
This paper concerns homoclinic solutions to periodic orbits in a fourth-order Hamiltonian system arising from a reduction of the classical water-wave problem in the presence of surface tension. These solutions correspond to travelling solitary waves which converge to non-decaying ripples at innnity. An analytical result of Amick and Toland, showing the existence of such homoclinic orbits to sma...
متن کاملHomoclinic Solutions for Second-order Non-autonomous Hamiltonian Systems without Global Ambrosetti-rabinowitz Conditions
This article studies the existence of homoclinic solutions for the second-order non-autonomous Hamiltonian system q̈ − L(t)q + Wq(t, q) = 0, where L ∈ C(R, Rn ) is a symmetric and positive definite matrix for all t ∈ R. The function W ∈ C1(R × Rn, R) is not assumed to satisfy the global Ambrosetti-Rabinowitz condition. Assuming reasonable conditions on L and W , we prove the existence of at leas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010